DETERMINATION OF THE CALIBRATION CURVE
IN BRIDGMAN ANVILS

P. I. Perlin UDC 539.31

In carrying ouf experiments or in putting into practice one or another industrial process in the high-
pressure region, we need a rather accurate knowledge of the value of the stresses at the location of the
substance being studied or processed. The functional connection between the above stress and the directly
determined value, i.e., the total force applied to the unit, is called the calibration curve. The reliability of
our knowledge of the calibration curve also determines the reliability of the operation of any given high-
pressure unit, since direct measurements of the pressure are practically excluded.

In high-pressure units, which use a liquid as a working medium, plotting of the calibration curve is
rather simple. It is a different matter in units which use a plastic substance as a working medium (with
the present-day level of'experimental techniques in the field of high-pressure physics, it is precisely these
units which permit obtaining maximal pressures). The present article considers this question using the
example of a rather characteristic unit, i.e., a Bridgman anvil.

A Bridgman anvil may be represented schematically in the form of two elastic half-spaces, with a
thin disc made of a plastic material arranged between them. With approach of the half-spaces, the disc
becomes thinner and its radius increases. Due to the presence of friction between the plastic medium and
the half-spaces (there is no lubricant), there arises a pressure gradient, increasing with a decrease in the
thickness of the disc. To simplify the analysis, we neglect the effect of the foreign inclusion located in the
plastic medium (the substance being investigated) since, as a rule, inclusions of this type are relatively
small. We also assume that the working medium is an ideally plastic body (og is the yield point).

Thus, the problem of determining the contact pressures in Bridgman anvils can be formulated as the
problem of the axisymmetric flow of a thin layer of plastic material over deformed surfaces [1].

We introduce the polar system of coordinates r, ¢; p(r), 7(r), and h(r) denote, respectively, the con~
tact pressure, the friction stress, and the half-thickness of the plastic disc. We denote its radius by R, and
the half-thickness at the edge, i.e., at r = R, by H.

Since h(r) <« R, in accordance with [1], we have the equation

dp T(r)
ar =) 1)

The friction stress 7(r) is assumed to be a given function. The contact pressure at the edge is
taken equal to

p(R)=055 (1464 cos 8) (d=aresin ©(R)/0.50)

The above value of p(R) is determined from the exact solution of the equations of plastic equilibriuin
in the neighborhood of the edge [2]. If the friction coefficient is equal to 0.5 og, then, p(R) =1.28 gg.

To determine the displacement of the surface of the half-spaces, w(r), we use the Boussinesq formula
(see, for example, [3]) which, with application to the axisymmetric case is written as follows:
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/ The problem consists of solving the system of equations (1), (2) simul~
/s taneously with equality (3), with a given total force and volume of the plastic
22996, s e medium. However, from a mathematical point of view, it is expedient to
F assume that the dimensions R and H are given. Constructing the solution,
Fig. 1 we find the sought force and volume. The final result can be represented in

the form of a calibration curve.

In [4] an investigation was made of the system (1), {2) under the condition 7(r) = —0.5 og. From the
postulation of a constant sign of the friction stresses, on the basis of Eq. (1) it follows immediately that in
absolute value the pressure rises from the edge toward the center, attaining its maximal value there. How=

- ever, the experimental investigations of [5] and others have shown that, with the compression of very thin
discs, the pressure in the central part becomes non~-maximal.

In [6] an attempt was made to explain this effect. The author took the road of a rather arbitrary divi-
sion of the plastic medium into an outer ring of plastic material, and a region located within, filled with a
compressible liquid. The result of the proposed model was a change in the sign of the friction stresses on
part of the contact surface.

We pass on to an explanation of the proposed model. We assume that at each moment of the deforma-~
tion there exists a circle (we call it neutral, and denote its radius by a) which has the property that the
plastic material located within it, during the course of the deformation, is displaced toward the center,
while that located outside the circle is displaced toward the periphery. Therefore, the friction stress 7(r)
must be positive with r < a, and negative with r >a. In the calculating scheme, for purposes of simplicity,
we shall assume that the friction stress is constant in value and equal to 0.5 og. '

The system of equations (1), (2) can be solved for any arbitrary value of the radius «, with given
values of H and R. To determine the actual value of the radius a, at fixed values of H and R, we must bring
in supplementary considerations. Furthermore, for purposes of simplification, in addition to taking a more
accurate account of the form of the working surfaces of the Bridgman anvil (the punches have the form of
truncated cones with small angles of conicity), we assume that the material flowing out beyond the limits
of the working surfaces has no effect on the further course of the process. We assume also that the work-
ing volume has already been filled; therefore, with a further approach of the punches, there is no change
in the value of R.

We assume that the system (1), (2) is solved for given values of a, H, and R, under the above condi-
tions (the method of solution is expounded below). We introduce into the consideration the function Q(r, H,
a}, equal to the volume of plastic material included within a circle of radius r. In this case, if we take
account of the compressibility of the plastic material, the function Q(r, H, a) must determine not the vol-
ume, but the corresponding mass.

Before passing on to the establishment of a connection between the quantities ¢ and H, let us consider
the question of the dynamics of the neutral circle. Let there exist some solution, determined by the set of
values of R, Hy, and g;- We assign to the quantity Hy a certain increment AHj.

How shall we determine the corresponding increment of ¢ ? Assuming that the value of AH; is small
in comparison with Hy, on the basis of the determined concept of the neutral circle, we can write the
equality

Q(a1+Aa1, H1—|—AH], (l]):Q(al, Hi, a1) (4)

With an accuracy up to infinitesimals of higher order, equality (4) may be represented in the form

aQ (r, Hi, aQ(ar, Hu, a
Aay (rarl a1} o AH (ngl D —0

r=ay
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) 16 Passing to the limit, we arrive at the differential equation
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Equation (5), generally speaking, permits determining a depen-
dence between ¢ and H, in the presence of noncontradictory starting
data. For interpretations we turn to a comparison between solutions
determined by the parameters a;, H; and ay + Aay, Hi + AHy. Let AH;

’; 7.3 x 7 be a negative quantity. If, with a decrease in the value of H, there is
‘not an increase in the thickness at the center, then, the set of values
Fig. 2 of gy and Hy must naturally be rejected. The limitation established

may also be written in differential form.

Since the function Q(r, H, &) cannot be determined in analytical form, the following procedure is pro-
posed for the approximate construction of the dependence ¢(H). On the curve of Fig. 1, we plot the point 1
with the coordinates H; and ¢;. We assign to Hy the increment AH;. We construct the solution for the para-
meters Hy—AH; and a, and, by trial-and-error, we determine the value of r (denoted by a3) for which the
following equality is satisfied ’

Q (ag, H; — AHy, 4)) = Q (ay, Hy, ay)

The point with the coordinates Hi—~AH; and q;, we denote by 2, and with the coordinates Hy—AH; and
a3 by 3. We further construct a solution for the parameters Hi—AH;~AH; and g;. We denote the corres-
ponding point by 4, etc. The smooth dotted curve, connecting the points with uneven indices, approximately
determines the required dependence.

We give below the results of calculations with the following values of the starting data: v = 0.3,
US/E =0.02, ¢/R = 0.3, Hi /R = 0.02034, AH;/R = —0.00154, AHg/R = —0.0012.

Point 1 Point 3 Point 5

H 0.02034  0.0488  0.0170
RO.5R) 0.00321  0.931 0.0932
A(0) ~ 0.11255  0.1128  0.1133,
a/R  0.3000 0.2999  0.2996
Q/RS  0.4244 0.4209  0.4175
Pjo Rt 14.22 14,52 14.91

Here P denotes the total force and Q the volume of the plastic medium.

With a transition from point 1 to points 3 and 5, there is a consecutive increase in the height at the
center, of the fotal force, and a decrease of the volume of material, as the result of its flowing out beyond
the working volume.

Figure 2 gives curves for p(r) and h(r) with the parameters ¢ = 0.3 and H; /R = 0.02034.

Let us continue our investigation of the question of determining the initial values of ¢« and H. We re-
turn to the case of the compression of an originally rather thick disc. Naturally, all the material will be
displaced away from the center, and the proposed scheme does not hold. In this case the value of H, at
which flow toward the center arises is determined from the equation

aQ (0, H, 0)/oH = 0 6)

Establishment of the corresponding value of H is of great practical importance since, in this case,
the region of actually constant pressure is greatly extended. Therefore, in carrying out experimental in-
vestigations, it is possible to displace a relatively large volume of the substance being investigated; the
results, being averaged, are not distorted by the nonhomogeneity of the stress field.

If an originally hollow disc is compressed, the investigation must be carried out in accordance with
{11, right up to the moment when the internal cavity degenerates. The value of the radius of the neutral
circle is taken from the solution for a hollow disc at the moment when the cavity degenerates.

The question under consideration is considerably more complex with the compression of originally
thin dises. For example, the following situation may arise. During the course of the compression, the
outer part of the disc may go over into a plastic state and, in the central part of the elastic zone, there may
arise breakaway of the material of the discs from the punches.
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The forming cavity may be the reason for plastic flow toward the center. To determine the sought
values of ¢ and H, it is found necessary to follow all the stages of the solution described above, right up to
the moment when the elastic zones degenerate.

The above considerations may be found to be extremely natural, if account is taken of the usual shap-
ing of the working surfaces.

The above analysis shows that the concept of a "calibration curve" for high-pressure units, using a
plastic body as a working medium, has meaning only with fixed starting dimensions of the plastic body.
Attention must also be called to the fact that the calibration curve may be found not to be a mutually single-
valued function.

Let us outline the calculating scheme. Let us consider the integral (2). We divide up the region of
integration (@ circle of radius R) by the set of [ concentric, equally spaced circles, and by a bundle of m
straight lines, passing through the center, into small curvilinear rectangles. We shall determine all the
sought functions p(r) and h(r) at points with the radial coordinate rj = (i—0.5) R/I, located at the centers of
these rectangles. The subscript i takes on values from 1 to /. The boundary conditions for the functions
pfr) and h(r) are taken at a point with the coordinate r. ‘

Taking account of the presence in the kernel under the integral sign of a weak (integrable) smgulamty,
we carry out the transformation

Ra2n Ran
= ((_fpo—porrarie 1w f ES ' dr' dg
“r v s V(' cos@ —r? 3- (' sin gp +RE ) P 2 Y V(r' cos @ — r)2 + (' sin @)?

The kernel of the expression under the integral sign in the first integral is a continuous function; the
second integral is taken in closed form [3]. It is found fo be equal to

o ( r \M 435 @n—1)-1.8.5....2n—3)
2nt [1 El <T> (2-46-....2n) ]
The elementary sums are calculated as the product of the difference p(r)—p(r), taken at the centers
of the corresponding rectangles, and the mean value at the apexes of the rectangles, of the following ex-
pression

rRu 1
Im YT cosQ —r) + (r sin 9)*

We return again to Eq. (1) and represent it approximately in the form

p(ry) =128, + 2‘ h Ar e (7)

The system of equations obtained is solved by the method of successive approximations. As a zero
approximation, we take any given distribution of the pressures p(ri); we determine the corresponding values
of w(r;) and, consequently, h(r;). From formula (7) we find the first approximation for the pressures p(ry;
we repeat the proposed algorithm until a satisfactory convergence is achieved.

In the calculations, the results of which were presented earlier, as a zero approximation we took
plri) =1.28 gg, L =80, m = 40, iteration number = 10. Under these circumstances, a degree of accuracy
up to 5 digits was attained.

The author thanks D. S. Mirinskii and A. D. Margolin for their valuable evaluation, and L. K. Trokin
and I. B. Deryugin for setting up the program and carrying out the calculations.
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